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Операторы Пуанкаре–Стеклова

Операторы Пуанкаре–Стеклова (ОПС), отображающие на части границы
рассматриваемой области граничные условия одного типа в граничные условия
другого типа, используются для решения различных классов краевых задач
математической физики в методах разделения областей [1,2], композиции [3],
топологической оптимизации и анализа чувствительности упругих тел [4].

1.Лебедев В.И., Агошков В.И. Операторы Пуанкаре–Стеклова и их приложения
в анализе. М.: Отдел вычисл. матем. АН СССР, 1983. 184 с.
2. Pechstein C. Finite and boundary element tearing and interconnecting solvers for
multiscale problems. Heidelberg: Springer Berlin, 2013. 322 p.
3. Лебедев В.И. Функциональный анализ и вычислительная математика. М.:
ФИЗМАТЛИТ, 2005. 296 с.
4. Novotny A.A., Soko lowski J., Żochowski A. Applications of the topological
derivative method. Cham: Springer, 2019. 212 p.
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Операторы Пуанкаре–Стеклова

Применение ОПС к решению задач одностороннего дискретного контакта
упругих тел позволяет получить вариационные формулировки этих задач в виде
граничных вариационных неравенств и задач минимизации граничных
функционалов, при численном решении которых требуется дискретизировать
лишь часть границы области — зону возможного контакта, что существенно
уменьшает размерность получаемых дискретных задач и снижает
вычислительные затраты [5, 6].

5. Бобылев А.А. Применение метода сопряженных градиентов к решению задач
дискретного контакта для упругой полуплоскости // Изв. РАН. МТТ. 2022. № 2.
С. 154–172.
6. Бобылев А.А. Алгоритм решения задач дискретного контакта для упругой
полосы // Прикл. матем. и механ. 2022. Т. 86, № 2. С. 404–423.
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Операторы Пуанкаре–Стеклова

Одним из наиболее эффективных подходов к построению ОПС для однородных и
кусочно-однородных областей является использование аппарата граничных
интегральных уравнений в сочетании с методом граничных элементов [7-9].
Однако отсутствие фундаментальных решений уравнений для непрерывно-
неоднородных сред требует разработки иных численно-аналитических методов.

7. Hsiao G.C., Wendland W.L. Boundary integral equations. Berlin, Heidelberg:
Springer, 2008. 620 p.
8. Sauter S.A., Schwab C. Boundary element methods. Berlin, Heidelberg:
Springer-Verlag, 2011. 561 p.
9. Gwinner J., Stephan E.P. Advanced boundary element methods. Treatment of
boundary value, transmission and contact problems. Cham: Springer, 2018. 652 p.
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Для упругой полосы ОПС Q : qn 7→ un, отображающий на части Γq границы
нормальные напряжения qn в нормальные перемещения un, имеет вид

un(x) =

∫
Γq

g(x− ξ)qn(ξ)dξ, (1)

где g(·) — функция Грина. Учитывая, что правая часть равенства (1) является
интегральным оператором типа свертки, с помощью интегрального
преобразования Фурье можно получить алгебраическое соотношение,
связывающее трансформанты перемещений ũn(α) и напряжений q̃n(α):

ũn(α) = G(α)q̃n(α), (2)

где α — параметр преобразования Фурье; G(α) = g̃(α) — трансформанта
функции Грина. Функцию G(α) далее будем называть передаточной функцией
(ПФ). Из (2) вытекает, что действие ОПС сводится к выполнению прямого и
обратного преобразований Фурье и перемножению трансформант.
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Передаточная функция оператора Пуанкаре–Стеклова

В случае однородной полосы выражение для ПФ может быть получено
аналитически. Для стратифицированной полосы эту функцию удается построить
с помощью численно-аналитической методики при специальной зависимости ее
упругих свойств по толщине, в частности, степенной или экспоненциальной
зависимости. В случае произвольного закона изменения упругих свойств
по толщине используются приближенные подходы, основанные как на замене
непрерывно-неоднородной полосы многослойной с кусочно-постоянной
зависимостью упругих модулей от координаты, так и на прямом численном
интегрировании краевых задач для систем дифференциальных уравнений
по поперечной координате. Основные трудности реализации таких подходов
обусловлены наличием экспоненциальных составляющих у фундаментальных
решений соответствующих систем дифференциальных уравнений, приводящих
к неустойчивости численных процедур решения задач Коши и их дискретных
аналогов и к плохой обусловленности систем линейных алгебраических
уравнений, возникающих при удовлетворении граничных условий. Анализ
публикаций показал, что основным способом преодоления указанных трудностей
является использование метода модулирующих функций, предложенного в [10].
Суть этого метода состоит в выделение в явном виде экспоненциальных
составляющих при построении матрицы Грина, в результате чего проблема
сводится к отысканию некоторых модулирующих функций ограниченной
вариации.

10. Бабешко В.А., Глушков Е.В., Глушкова Н.В. Методы построения матриц
Грина для стратифицированного упругого полупространства // ЖВММФ. 1987.
Т. 27. № 1. С. 93–101.
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Передаточная функция оператора Пуанкаре–Стеклова

В [11] предложен новый алгоритм вычисления ПФ для сжимаемой упругой
полосы, основанный на использовании вариационной формулировки краевой
задачи для трасформант перемещений. Аппроксимация вариационных уравнений
производилась методом конечных элементов. Для численного решения задачи
применялся линейный одношаговый нестационарный итерационный метод,
на каждом шаге которого методом прогонки решаются две системы линейных
алгебраических уравнений (СЛАУ) с трехдиагональными матрицами. Разработан
эвристический алгоритм выбора последовательности параметров итерационного
метода, обеспечивающий сходимость итерационного процесса для любых
значений параметра преобразования Фурье α.
В [12] предложен новый вариант алгоритма, использующий предобусловленный
метод сопряженных градиентов.
Проведенное численное исследование вычислительных алгоритмов [11, 12]
показало, что для слабосжимаемых упругих полос с увеличением отношения
параметров Ламе λ/µ материала полосы увеличивается погрешность численного
решения. В связи с этим целью данной работы является обобщение подходов,
предложенных в [11, 12], на случай несжимаемой стратифицированной упругой
полосы.

11. Бобылев А.А. Численное построение трансформанты ядра интегрального
представления оператора Пуанкаре-Стеклова для упругой полосы // Дифференц.
уравнения. — 2023. — Т. 59, № 1. — С. 115–129.
12. Бобылев А.А. Алгоритм вычисления передаточной функции оператора
Пуанкаре-Стеклова для стратифицированной упругой полосы // Вест. Моск.
ун-та. Сер. 15. Вычисл. матем. и киберн. 2025. № 1. С. 10-17.

7 / 40



Постановка краевой задачи

Сформулируем краевую задачу, с помощью которой вводится исследуемый ОПС
Q. Пусть изотропная несжимаемая упругая полоса толщины h занимает область
Ω = {x = (x1, x2) ∈ R2 : |x1| ⩽ ∞, 0 ⩽ x2 ⩽ h}. Границу полосы x2 = 0
обозначим Γ0, а границу x2 = h — через Γ1. Под uk(x), σkl(x), k, l = 1, 2, будем
понимать соответственно компоненты вектора перемещений и тензора
напряжений в точке x ∈ Ω.
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Постановка краевой задачи

Предполагается, что массовые силы и напряжения в недеформированном
состоянии отсутствуют, упругая полоса находится в условиях плоской
деформации, деформации малы и выполняется условие несжимаемости

u1,1 + u2,2 = 0. (3)

Для несжимаемого материала закон Гука записывается в виде

σ11 = σ + 2µu1,1, σ12 = σ21 = µ(u1,2 + u2,1), σ22 = σ + 2µu2,2, (4)

где σ — гидростатическое напряжение.

Модуль сдвига материала полосы является произвольной ограниченной
функцией координаты x2: µ = µ(x2). Требования к гладкости этой функций
будут сформулированы ниже. Из физических соображений следует, что
существует постоянная µ∗ > 0 такая, что

µ(x2) ⩾ µ∗, 0 ⩽ x2 ⩽ h. (5)

Уравнения равновесия имеют вид:

σ11,1 + σ21,2 = 0, σ21,1 + σ22,2 = 0. (6)
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Постановка краевой задачи

По границе Γ0 полоса сцеплена с недеформируемым основанием:

u1 = u2 = 0 на Γ0. (7)

На части границы Γq ⊂ Γ1 приложена нормальная нагрузка:

σ22 = q, σ21 = 0 на Γq . (8)

Остальная часть границы Γ1 свободна от внешних нагрузок:

σ22 = σ21 = 0 на Γ1 \ Γq . (9)

Предполагается, что участок границы Γq является конечным, а главный вектор
внешних усилий отличен от нуля и имеет ограниченную величину:

diamΓq < ∞, 0 <
∣∣∣ ∫

Γq

q dΓq

∣∣∣ < ∞. (10)
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Постановка краевой задачи

Для замыкания постановки краевой задачи необходимо задать условия
на бесконечности. Обычно в качестве таковых используются условия,
характеризующие определенный порядок изменения перемещений и напряжений
на бесконечности. Как правило, эти условия носят чисто математический
характер. С учетом условий (10) более естественным является условие
конечности потенциальной энергии деформации полосы∫

Ω

[
2µ(u2

1,1 + u2
2,2) + µ(u1,2 + u2,1)

2
]
dΩ < ∞, (11)

которое вполне замыкает постановку задачи и определяет поведение решения
на бесконечности.

Введем безразмерные параметры:

x̂i = xi/h, ûi = ui/h, σ̂ij = σij/µ
∗, i, j = 1, 2,

σ̂ = σ/µ∗, µ̂ = µ/µ∗, q̂ = q/µ∗,

где µ∗ — характерное значение модуля сдвига, например максимальное или
среднее значение по толщине полосы. Перейдем во всех соотношениях (3)–(11)
постановки задачи к безразмерным параметрам. Для упрощения обозначений
символ “ˆ” далее будем опускать.

11 / 40



Применение преобразования Фурье

Введем преобразования Фурье функций, определенных в Ω̄, по переменной x1

обычными формулами

f̃(α, x2) =

∞∫
−∞

f(x1, x2) exp(−iαx1)dx1, 0 ⩽ x2 ⩽ 1, α ∈ R. (12)

Умножим уравнения (3), (4) и (6) на exp(−iαx1) и интегрируем по x1 от −∞ до
∞. В результате получим систему равенств, которые после интегрирования по
частям превращаются в систему соотношений относительно трансформант ũk,
σ̃kl, σ̃ и их производных, рассматриваемых как функции переменной x2:

iαũ1 + ũ′
2 = 0, (13)

σ̃11 = σ̃ + 2iαµũ1, σ̃21 = µ(ũ′
1 + iαũ2), σ̃22 = σ̃ + 2µũ′

2, (14)

iασ̃11 + σ̃′
21 = 0, iασ̃21 + σ̃′

22 = 0. (15)

Аналогично применим преобразование Фурье к граничным условиям (7)–(9),
предполагая существование преобразования Фурье q̃(α) тривиального
продолжения функции q(x1) на Γ1. В результате получим

ũ1 = 0, ũ2 = 0 при x2 = 0, (16)

σ̃22 = q̃, σ̃21 = 0 при x2 = 1. (17)
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Теорема 1. Если существуют преобразования Фурье всех компонент
перемещений и напряжений и тривиального продолжения функции q(x1) на Γ1, а
также выполняется условие

µ(x2) ∈ C2[0, 1], (18)

то преобразование Фурье компоненты перемещений ũ2 ≡ v решения краевой
задачи (3)–(11) для любого α ∈ R, α ̸= 0, удовлетворяет краевой задаче

(µ(v′′/α2 + v))′′ + µ(v′′ + α2v)− 4(µv′)′ = 0, (19)

v = 0, v′ = 0 при x2 = 0, (20)

−(µ(v′′/α2 + v))′ + 4µv′ = q̃, v′′/α+ αv = 0 при x2 = 1. (21)

Трансформанты остальных компонент перемещений и напряжений вычисляются
с помощью соотношений

ũ1 = iũ′
2/α. (22)

σ̃ = −(µ(ũ′′
2/α+ αũ2))

′/α+ 2µũ′
2, (23)

σ̃11 = σ̃ − 2µũ′
2, (24)

σ̃22 = σ̃ + 2µũ′
2, (25)

σ̃21 = iµ(ũ′′
2/α+ αũ2). (26)

Определение 1. Решение краевой задачи (19)–(21), принадлежащее классу
функций C4(0, 1) ∩ C3[0, 1], называют классическим решением.
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Свойства передаточной функции

Лемма 1. Если q̃(α) ̸= 0, то ПФ G(α) вычисляется с помощью решения краевой
задачи (19)–(21) по формуле:

G(α) = ũ2(α, 1)/q̃(α). (27)

Лемма 2. ПФ G(α) удовлетворяет условию

G(0) = 0. (28)

Лемма 3. ПФ G(α) является четной.

14 / 40



Однородная несжимаемая полоса

Для однородной полосы (µ(x2) ≡ µ∗) уравнение (19) и краевые условия
(20)–(21) примут вид:

vIV /α2 − 2v′′ + α2v = 0, (29)

v = 0, v′ = 0 при x2 = 0, (30)

−v′′′/α2 + 3v′ = q̃/µ∗, v′′/α+ αv = 0 при x2 = 1. (31)

Лемма 4. Решение краевой задачи (29)–(31) имеет вид:

v(x2) =
e−α(1−x2)

2µ∗α
·
a0 + a1e−2α(1+x2) + a2e−2αx2 + a3e−2α

b0 + b1e−2α + b2e−4α
, (32)

где

a0 = (1− x2)/α+ 1/α2, a1 = (1− x2)/α− 1/α2,

a2 = −2x2 − (1 + x2)/α− 1/α2, a3 = 2x2 − (1 + x2)/α+ 1/α2,

b0 = 1/α2, b1 = (4 + 2/α2), b2 = 1/α2.

Полученное решение представляет собой функцию типа погранслоя первого
порядка.
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Однородная несжимаемая полоса

Лемма 5. Для изотропной несжимаемой однородной упругой полосы
(µ(x2) ≡ µ∗) ПФ G(α) вычисляется по формуле

G(α) =
1− 4αe−2α − e−4α

2µ∗α(1 + 2(2α2 + 1)e−2α + e−4α)
, (33)

а главные члены G0(α) и G∞(α) асимптотических разложений ПФ при
соответственно α → 0 и α → ∞ равны:

G0(α) = α2/(3µ∗), G∞(α) = 1/(2αµ∗). (34)
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Вариационная формулировка

Введем в рассмотрение функциональное пространство, элементы которого
удовлетворяют главным граничным условиям (20)

Z =
{
z ∈ W 2

2 (0, 1) : z(0) = 0, z′(0) = 0
}
, (35)

где W 2
2 (0, 1) — пространство Соболева. Пространство Z является гильбертовым

пространством со скалярным произведением из W 2
2 (0, 1). Предполагая, что

µ(x2) ∈ L∞(0, 1), (36)

введем на Z билинейную и линейную формы

a(v, w) = [µ(v′′/α+ αv), w′′/α+ αw] + 4 [µv′, w′], (37)

l(w) = q̃(α)w(1), (38)

где [·, ·] — стандартное скалярное произведение в L2(0, 1).

Теорема 2. Классическое решение v краевой задачи (19)–(21) для любого α ∈ R,
α ̸= 0, является решением вариационного уравнения

a(v, w)− l(w) = 0 ∀w ∈ Z. (39)

Определение 2. Решение вариационной задачи (39) называют обобщенным
решением краевой задачи (19)–(21). 17 / 40



Исследование свойств билинейной формы a(·, ·)

Для исследования свойств билинейной формы a(·, ·) используем методику,
предложенную в работе [11]

11. Бобылев А.А. Численное построение трансформанты ядра интегрального
представления оператора Пуанкаре-Стеклова для упругой полосы // Дифференц.
уравнения. — 2023. — Т. 59, № 1. — С. 115–129.

Введем гильбертово пространство вектор-функций Y = [L2(0, 1)]3, оснащенное
скалярным произведением

(ŷ, y̌)Y = [ŷ1, y̌1] + [ŷ2, y̌2] + [ŷ3, y̌3], ŷ = (ŷ1, ŷ2, ŷ3), y̌ = (y̌1, y̌2, y̌3) (40)

и определим оператор j : Z → Y такой, что jz = (z, z′, z′′) для любого z ∈ Z.

Лемма 6. Оператор j : Z → Y является линейным инъективным
изометрическим оператором.

Лемма 7. Множество значений R(j) оператора j является собственным
замкнутым линейным подпространством в Y .

18 / 40



Исследование свойств билинейной формы a(·, ·)

Зададим на Y билинейную форму

d(ŷ, y̌) = (Dŷ, y̌)Y , (41)

где D(x2, α) — квадратная симметричная матрица-функция третьего порядка

D(x2, α) =

 α2µ(x2) 0 µ(x2)
0 4µ(x2) 0

µ(x2) 0 µ(x2)/α2

 .

Лемма 8. Для любых ẑ, ž ∈ Z выполняется равенство

a(ẑ, ž) = d(jẑ, jž). (42)

Матрицу-функцию D(x2, α) при фиксированных значениях x2 и α можно
рассматривать как квадратную симметричную матрицу третьего порядка
с постоянными коэффициентами. Современные системы компьютерной алгебры
позволяют аналитически вычислить ее собственные значения и соответствующие
им собственные векторы.

19 / 40



Исследование свойств билинейной формы a(·, ·)

Лемма 9. При фиксированных значениях x2 и α ̸= 0 матрица D(x2, α) имеет
три вещественных собственных значения

ω1 = (α2 + 1/α2)µ, ω2 = 4µ, ω3 = 0, (43)

которым соответствуют ортонормированные собственные векторы

f1 = (α2γ, 0, γ)T , f2 = (0, 1, 0)T , f3 = (γ, 0,−α2γ)T , (44)

где γ = (1 + α4)−1/2.

Следствие 1. При выполнении условия (5) существует постоянная ω∗ > 0 такая,
что

ωn ⩾ ω∗, n = 1, 2, (45)

и матрица D(x2, α) является неотрицательно определенной.

Следствие 2. При выполнении условия (36) собственные значения матрицы
D(x2, α) ограничены почти всюду на [0, 1], т.е. существует постоянная ω∗ > 0
такая, что

∥ωn∥L∞(0,1) ⩽ ω∗, n = 1, 2. (46)
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Исследование свойств билинейной формы a(·, ·)

Введем квадратную матрицу-функцию F (α) третьего порядка, столбцами
которой являются векторы-функции fn(α), n = 1, 2, 3. Для фиксированного
значения α матрицу-функцию F (α) можно рассматривать как квадратную
матрицу третьего порядка с постоянными коэффициентами.

Лемма 10. Матрица F (α) для любого α ∈ R является ортогональной, т. е.
F−1 = F T и

∥Fr∥E3 = ∥F T r∥E3 = ∥r∥E3 ∀r ∈ E3, (47)

где E3 — евклидово пространство, а также имеет место равенство

F TDF = diag(ω1, ω2, ω3). (48)

Следствие 3. Для любых r̂, ř ∈ E3 выполняются равенства

(Dr̂, ř)E3 =
(
F TDFp̂, p̌

)
E3

= ω1p̂1p̌1 + ω2p̂2p̌2, (49)

где p̂ = F T r̂, p̌ = F T ř.

Лемма 11. Для любых ẑ, ž ∈ Z выполняется равенство

a(ẑ, ž) = [ω1ŝ1, š1] + [ω2ŝ2, š2], (50)

где ŝ = F T jẑ, š = F T jž. 21 / 40



Вариационная формулировка

Лемма 12. Для любого фиксированного α ∈ R, α ̸= 0, при выполнении условия
(36) билинейная форма a(·, ·) является непрерывной на Z.

Лемма 13. Для любого фиксированного α ∈ R, α ̸= 0, при выполнении условия
(5) билинейная форма a(·, ·) является положительно определенной на Z.

Лемма 14. Если |q̃(α)| < ∞, то линейная форма l(·) непрерывна на Z.

Теорема 3. Решение вариационной задачи (39) существует и единственно.

Теорема 4. Вариационная задача (39) эквивалентна задаче минимизации
функционала энергии: для фиксированного α ∈ R найти вектор-функцию v ∈ Z
такую, что

J(v) = inf
w∈Z

{J(w) = a(w,w)− 2l(w)} . (51)

Теорема 5. Решение вариационной задачи (39), если оно существует и обладает
четвертыми производными (хотя бы обобщенными), удовлетворяет (почти
всюду) уравнению (19) и краевым условиям (20)–(21).
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Свойства передаточной функции

Лемма 15. Для любого α ∈ R, α ̸= 0, ПФ G(α) удовлетворяет равенствам

G(α) = a(v∗, v∗), G(α) = −J(v∗), (52)

где v∗ — решение вариационного уравнения (39) и задачи минимизации (51) для
q̃(α) = 1.

Следствие 4. Для всех α ∈ R ПФ G(α) является вещественной функцией,
положительной при α ̸= 0.

Лемма 16. В любой точке α ∈ R, α ̸= 0, ПФ G(α) непрерывна.
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Конечномерная аппроксимация вариационной задачи

Для аппроксимации вариационной задачи (39) применялся метод конечных
элементов. Использовались двухузловые кубические эрмитовы элементы.
С помощью стандартной процедуры метода Бубнова-Галеркина получена система
линейных алгебраических уравнений (СЛАУ)

AV = L, (53)

матрица которой является ленточной с полушириной равной 3.
Из положительной определенности билинейной формы a(·, ·) следует, что
матрица A является симметричной и положительно определенной. Поэтому для
численного решения СЛАУ (53) использовался метод Холецкого (квадратных
корней).

Основная проблема, возникающая при численном решении вариационной задачи
(39), обусловлена тем, что для больших значений параметра α решение задачи
является функцией типа погранслоя. Выше это было аналитически показано для
однородной несжимаемой полосы. Поэтому использовались адаптивные конечно-
элементные сетки. Задавались количество узлов сетки M и размер l(α)
наименьшего конечного элемента, одним из узлов которого является точка
x2 = 1. Размеры остальных элементов вычислялись таким образом, чтобы
образовывать геометрическую прогрессию по мере удаления элементов от точки
x2 = 1. Эмпирически подобрана зависимость l(α) = 5 · 10−3s, где s = 2π/α —
«длина волны», соответствующая «волновому числу» α.
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Конечномерная аппроксимация вариационной задачи

Учитывая существенную неравномерность конечно-элементной сетки при
больших значениях параметра α, для улучшения обусловленности матрицы
СЛАУ (53) применялось двухстороннее предобусловливание

DADW = DL, V = DW , (54)

где D = diag(d1, d2, . . . , d2M ) — диагональная матрица. При использовании
конечно-элементных сеток с последовательной нумерацией элементов и узлов
элементы матрицы D вычисляются по формулам

d1 = l
3/2
1 , d2 = l

1/2
1 ,

d2m−1 = ((lm−1 + lm)/2)3/2, d2m = ((lm−1 + lm)/2)1/2, m = 2, 3, . . . ,M − 1,

d2M−1 = l
3/2
M−1, d2M = l

1/2
M−1,

где lm — длина конечного элемента с номером m.

Для оценки погрешности полученных численных решений проводился их
апостериорный анализ. Использовалось первое из соотношений (52), для
которого вычислялась относительная невязка

εh(α) = |Gh(α)− a(vh, vh)|/Gh(α), (55)

где vh — приближенное решение для q̃(α) = 1, Gh(α) = vh(1).
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При решении задач одностороннего дискретного контакта для приближенного
вычисления действия ОПС с помощью соотношения

un(x) =

∫
Γq

g(x− ξ)qn(ξ)dξ (56)

применялись алгоритмы быстрого преобразования Фурье. С целью уменьшения
возникающей при этом так называемой ошибки периодичности вводилась
расширенная вычислительная область Γc такая, что Γq ⋐ Γc. Частота
дискретизации αd полагалась равной 2π/L, где L = diamΓc, а количество
вычисляемых значений ПФ составляло половину от числа граничных элементов
на Γc. Учитывая, при решении контактных задач требуются достаточно мелкие
сетки (в задачах для тел с микрорельефом — более миллиона узлов), для
уменьшения вычислительных затрат в [13] предложен комбинированный подход
к вычислению ПФ с использованием алгоритма [14] и асимптотического ряда
(трехчленного асимптотического разложения ПФ при α → ∞) или его
аппроксимаций Паде (АП).

13. Бобылев А.А. Задача одностороннего дискретного контакта для
функционально-градиентной упругой полосы // Вест. Моск. ун-та. Сер. 1.
Матем. Механ. 2024. № 2. С. 58–69.
14. Бобылев А.А. Численное построение трансформанты ядра интегрального
представления оператора Пуанкаре-Стеклова для упругой полосы // Дифференц.
уравнения.2023. Т. 59, № 1. С. 115–129.
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Асимптотика передаточной функции при больших α

Переход к малому параметру

Введем малый параметр ε = 1/α и представим уравнение (19) и краевые условия
(20)–(21) в виде

(µ(ε2v′′ + v))′′ + µ(v′′ + v/ε2)− 4(µv′)′ = 0, (57)

v = 0, v′ = 0 при x2 = 0, (58)

−(µ(ε2v′′ + v))′ + 4µv′ = q̃, εv′′ + v/ε = 0 при x2 = 1. (59)

Уравнение (57) представляет собой обыкновенное дифференциальное уравнение
с малым параметром при старшей производной. Метод асимптотического
интегрирования таких уравнений, состоящий из двух итерационных процессов,
предложен в работе
15. Вишик М.И., Люстерник Л.А. Регулярное вырождение и пограничный слой
для линейных дифференциальных уравнений с малым параметром // Успехи
матем. наук. 1957. Т. 12, № 5. С. 3–122.
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Внешнее асимптотическое разложение

С помощью первого итерационного процесса построим приближенное решение vε
краевой задачи (57)–(59) в виде многочлена по четным степеням ε:

vε(ε, x2) = vε(0)(x2) + ε2vε(2)(x2) + ε4vε(4)(x2) + . . . (60)

Подставляя (60) в (57)–(59) и собирая члены с одинаковыми степенями ε,
получим для определения vε(n), n = 0, 2, 4, . . . , следующую рекуррентную
последовательность краевых задач:

при ε0

µvε(0) = 0, (61)

vε(0) = 0, v′ε(0) = 0 при x2 = 0, (62)

−(µvε(0))
′ + 4µv′ε(0) = 0, vε(0) = 0 при x2 = 1; (63)

при ε2

µvε(2) = −(µvε(0))
′′ − µv′′ε(0) + 4(µv′ε(0))

′, (64)

vε(2) = 0, v′ε(2) = 0 при x2 = 0, (65)

−(µvε(2))
′ + 4µv′ε(2) = q̃ + (µv′′ε(0))

′, vε(2) = −v′′ε(0) при x2 = 1; (66)
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Внешнее асимптотическое разложение

при εn, n = 4, 6, . . . ,

µvε(n) = −(µvε(n−2))
′′ − µv′′ε(n−2) + 4(µv′ε(n−2))

′ − (µv′′ε(n−4))
′′, (67)

vε(n) = 0, v′ε(n) = 0 при x2 = 0, (68)

−(µvε(n))
′ + 4µv′ε(n) = (µv′′ε(n−2))

′, vε(n) = −v′′ε(n−2) при x2 = 1. (69)

Имея в виду условие (5), несложно проверить, что тривиальное решение

vε(n) ≡ 0, n = 0, 2, 4, . . . , (70)

является единственным решением, удовлетворяющим всем соотношениям
(61)–(69), кроме первого краевого условия из (66). Для удовлетворения этого
условия построим вблизи точки x2 = 1 дополнительное решение типа
погранслоя, используя второй итерационный процесс.
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Внутреннее асимптотическое разложение

Вблизи точки x2 = 1 решение типа погранслоя ищется в виде многочлена по ε:

wε(ε, x2) = εwε(1)(ξ) + ε2wε(2)(ξ) + ε3wε(3)(ξ) + . . . , (71)

где ξ = (1− x2)/ε — “растянутая“ координата.

Предполагая дифференцируемость в точке x2 = 1 функции µ(x2), описывающей
закон распределение модуля сдвига по толщине полосы, разложим ее в ряд
Тейлора:

µ(x2) = µ0 + µ1(x2 − 1) + µ2(x2 − 1)2/2 + µ3(x2 − 1)3/6 + . . . =

= µ0 − εµ1ξ + ε2µ2ξ
2/2− ε3µ3ξ

3/6 + . . . , (72)

где µ0 = µ(1), µk =
dkµ

dxk
2

∣∣∣
x2=1

, k = 1, 2, . . ..

Принимая во внимание (70), подставим (71) и (72) в (57)–(59). Собирая далее
члены с одинаковыми степенями ε, получим для определения
wε(n), n = 1, 2, . . . , следующую рекуррентную последовательность краевых
задач:
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Внутреннее асимптотическое разложение

при ε1

wIV
ε(1) − 2w′′

ε(1) + wε(1) = 0, (73)

w′′′
ε(1) − 3w′

ε(1) = q̃/µ0, w′′
ε(1) + wε(1) = 0 при ξ = 0, (74)

wε(1) = 0, w′
ε(1) = 0 при ξ → ∞; (75)

при ε2

wIV
ε(2) − 2w′′

ε(2) + wε(2) =

= µ1(ξw
IV
ε(1) + 2w′′′

ε(1) − 2ξw′′
ε(1) − 2w′

ε(1) + ξwε(1))/µ0, (76)

w′′′
ε(2) − 3w′

ε(2) = µ1(ξw
′′′
ε(1) + w′′

ε(1) − 3ξw′
ε(1) + wε(1))/µ0,

w′′
ε(2) + wε(2) = µ1ξ(w

′′
ε(1) + wε(1))/µ0 при ξ = 0, (77)

wε(2) = 0, w′
ε(2) = 0 при ξ → ∞; (78)
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Внутреннее асимптотическое разложение

при ε3

wIV
ε(3) − 2w′′

ε(3) + wε(3) =

= µ1(ξw
IV
ε(2) + 2w′′′

ε(2) − 2ξw′′
ε(2) − 2w′

ε(2) + ξwε(2))/µ0 − (79)

−µ2(ξ
2wIV

ε(1)/2 + 2ξw′′′
ε(1) + (1− ξ2)w′′

ε(1) − 2ξw′
ε(1) + (1 + ξ2/2)wε(1))/µ0,

w′′′
ε(3) − 3w′

ε(3) = µ1(ξw
′′′
ε(2) + w′′

ε(2) − 3ξw′
ε(2) + wε(2))/µ0−

−µ2(ξ
2w′′′

ε(1)/2 + ξw′′
ε(1) − 3ξ2w′

ε(1)/2 + ξwε(1))/µ0,

w′′
ε(3) + wε(3) = µ1ξ(w

′′
ε(2) + wε(2))/µ0−

−µ2ξ
2(w′′

ε(1) + wε(1))/(2µ0) при ξ = 0, (80)

wε(3) = 0, w′
ε(3) = 0 при ξ → ∞; (81)

. . . . . . . . . . . . . . . . . . . . . .

Отметим, что дифференциальные уравнения (73), (76) и (79) являются
уравнениями с постоянными коэффициентами. Для решения краевых задач
(73)–(75), (76)–(78) и (79)–(81) применялась система компьютерной алгебры
SageMath. Полученные аналитические решения далее использовались для
построения трехчленного асимптотического разложения ПФ при больших α.
Сами решения в настоящей работе не приводятся ввиду их громоздкости.
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Трехчленное асимптотическое разложение ПФ

Используя аналитические решения wε(n), n = 1, 2, 3, краевых задач (73)–(75),
(76)–(78) и (79)–(81), с помощью формулы (27) вычислим трехчленное
асимптотическое разложение ПФ:

G3ε(ε) = εG1 + ε2G2 + ε3G3 +O(ε4), (82)

где

G1 =
1

2µ0
, G2 =

3µ1

4µ2
0

, G3 =
11µ2

1 − 6µ0µ2

8µ3
0

.

Замечание 1. Нетрудно видеть, что для однородной полосы G2 = G3 = 0.
Отметим также, что полученное выражение для G1 с учетом равенства µ0 = µ∗
совпадает с приведенным выше выражением (34).

Для сжимаемой упругой полосы

G1 =
λ0 + 2µ0

2µ0(λ0 + µ0)
,

G2 =
λ1

4(λ0 + µ0)2
+

(3λ2
0 + 6λ0µ0 + 4µ2

0)µ1

4µ2
0(λ0 + µ0)2

,

G3 =−
λ2

8(λ0 + µ0)2
−

(6λ2
0 + 12λ0µ0 + 7µ2

0)µ2

8µ2
0(λ0 + µ0)2

−
(λ2

0 − 2µ2
0)λ1µ1

4µ0(λ0 + 2µ0)(λ0 + µ0)3
+

+
(2λ0 + 3µ0)λ2

1

8(λ0 + 2µ0)(λ0 + µ0)3
+

(11λ4
0 + 56λ3

0µ0 + 100λ2
0µ

2
0 + 78λ0µ3

0 + 24µ4
0)µ

2
1

8µ3
0(λ0 + 2µ0)(λ0 + µ0)3

.
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Аппроксимации Паде

В настоящее время использование АП считается одним из перспективных
подходов к суммированию степенных рядов. АП являются наилучшими
рациональными аппроксимациями заданного степенного ряда, они
конструируются непосредственно по его коэффициентам и позволяют
осуществлять аналитическое продолжение этого ряда за пределы его круга
сходимости.

Построим АП [n/m]

P[n/m](ε) =
a0 + a1ε+ . . .+ anεn

1 + b1ε+ . . .+ bmεm
(83)

для трехчленного асимптотического разложения ПФ G3ε(ε). Коэффициенты АП
определяются из условия

G3ε(ε) = P[n/m](ε) +O(ε4), (84)

где n+m = 3. Несложно показать, что для G3ε(ε) существуют две АП: [1/2] и
[2/1]. Выражения для коэффициентов обеих АП можно получить в явном виде:

[1/2] : a0 = 0, a1 = G1, b1 = −G2/G1, b2 = (G2
2 −G1G3)/G

2
1;

[2/1] : a0 = 0, a1 = G1, a2 = (G2
2 −G1G3)/G2, b1 = −G3/G2.
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Алгоритм вычисления передаточной функции

При использовании алгоритмов быстрого преобразования Фурье для
приближенного вычисления действия ОПС с помощью соотношения

ũn(α) = G(α)q̃n(α) (85)

требуется вычислить значения ПФ G(α) в точках сетки αk = kαd, k = 0,K. При
решении задач одностороннего дискретного контакта количество точек K может
быть достаточно большим, более 106. Для уменьшения вычислительных затрат
применяется комбинированный подход к вычислению ПФ. Сначала с помощью
изложенного выше вычислительного алгоритма решения методом КЭ
вариационной задачи (39) последовательно вычисляются сеточные значения ПФ
G(αk), k = 1, 2, . . ., и для каждого индекса k производится проверка условий

|G(αk)− Fi(1/αk)| < δ|G(αk)|, i = 1, 2, 3, (86)

где {F1, F2, F3} = {G3ε, P[1/2], P[2/1]} — набор аппроксимирующих функций; δ —
заданный параметр, характеризующий расхождение значений. Обозначим через
k(i), i = 1, 2, 3, наименьшее значение индекса k, начиная с которого условие (86)
для аппроксимирующей функции Fi выполняется подряд заданное число раз l.
Для практических расчетов можно полагать l = 5÷ 10. Пусть k(m) —
наименьшее из k(i). Тогда начиная с k = k(m) + l для вычисления ПФ вместо
МКЭ-алгоритма следует использовать аппроксимирующую функцию Fm. Если
k(m) совпадает с более чем одним k(i), то можно воспользоваться любой
соответствующей этим индексам аппроксимирующей функцией.
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Результаты вычислительных экспериментов

Разработанный алгоритм вычисления ПФ реализован на алгоритмическом языке
FORTRAN 2008 в виде пакета модулей. Для верификации вычислительного
алгоритма и программного обеспечения использовались аналитическое решение
(32) краевой задачи (29)–(31) для однородной изотропной несжимаемой упругой
полосы и соответствующая ему формула (33) для вычисления ПФ. Количество
узлов сетки выбиралось равным M = 501. Вычисления проводились с двойной
точностью. Сравнение аналитического (33) и численного решений при изменении
параметра α в диапазоне от 10−4 до 104 показало, что последнее содержит пять
верных значащих цифр. Также отметим, что относительная невязка

εh(α) = |Gh(α)− a(vh, vh)|/Gh(α), (87)

где vh — приближенное решение для q̃(α) = 1, Gh(α) = vh(1), вычисляемая для
апостериорного анализа численного решения, не превышала 10−5.
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Результаты вычислительных экспериментов

Для подтверждения эффективности разработанного комбинированного подхода
к вычислению ПФ ОПС ниже приведены результаты вычислительных
экспериментов для восьми типов стратифицированных упругих полос, состоящих
из N = 10 одинаковых несжимаемых слоев, безразмерный модуль сдвига
которых изменялся по одному из следующих законов:

1) µ(s) = 1 + 3s; 5) µ(s) = 4− 3s;

2) µ(s) = 1 + 3s2; 6) µ(s) = 4− 3s2;

3) µ(s) = 1 + 3s4; 7) µ(s) = 4− 3s4;

4) µ(s) = 4s; 8) µ(s) = 41−s.

где s = {Nx2} — «быстрая» координата, {·} — дробная часть числа. При
проведении расчетов принимались следующие значения параметров: l = 10,
δ = 10−5, αd = 1.
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Результаты вычислительных экспериментов

В таблице приведены значения k(i), i = 1, 2, 3, для каждой из восьми указанных
полос.

Таблица 1. Результаты вычислительных экспериментов
Fi k(i) 1 2 3 4 5 6 7 8
G3ε k(1) 706 892 395 564 2589 5678 11727 619
P[1/2] k(2) 409 593 918 423 1438 3202 6659 391
P[2/1] k(3) 354 626 1362 518 1335 2598 5508 535

Кроме того, была протестирована аппроксимирующая функция в виде
одночленного асимптотического разложения при больших α: F4(α) = εG1(ε).
Оказалось, что для всех восьми стратифицированных полос значение индекса
k(4) превышало 105, при этом для однородной несжимаемой полосы k(4) = 9.

Таким образом, применение комбинированного подхода к вычислению ПФ
с использованием трехчленного асимптотического разложения ПФ и построенных
на его основе АП позволяет существенно сократить вычислительные затраты.
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Заключение

Получена вариационная формулировка краевой задачи для трасформант
перемещений, на основе которой разработан алгоритм вычисления ПФ ОПС,
отображающего на части границы изотропной несжимаемой
стратифицированной упругой полосы нормальные напряжения в нормальные
перемещения. Использование трехчленного асимптотического разложения ПФ и
построенных на его основе АП позволяет существенно сократить
вычислительные затраты.

Разработанный вычислительный алгоритм может быть применен и в случае
наличия на части границы полосы касательных напряжений. Изменится лишь
вид линейной формы l(w).

Отметим также, что предложенный подход к вычислению ПФ может быть
обобщен на случай, когда на границе контакта полосы с недеформируемым
основанием заданы граничные условия скользящей заделки.

Результаты, изложенные в докладе, будут опубликованы в статье

16. Бобылев А.А. Об операторе Пуанкаре-Стеклова для несжимаемой упругой
полосы // Журнал вычислительной математики и математической физики.
2025, том 65, № 11. С. 1865-1880.
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БЛАГОДАРЮ ЗА ВНИМАНИЕ!
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