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Программирование и вычислительная математика

• решение задач математического моделирования – один из важнейших 

стимулов развития вычислительной математики и программирования
Трифонов Н.П. Решение на ЭВМ задач структурного анализа кристаллов (кандидатская диссертация, 

руководитель С.Л. Соболев)
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• моделирование на основе данных– один из современных трендов в 

математическом моделировании и предиктивной аналитике как частей 

искусственного интеллекта

• современные алгоритмы работы с данными являются «математикоемкими» 

и используют широкий спектр глубоких математических методов, включая    

дифференциально-геометрические и топологические методы 



Математические модели на первых принципах

Летательный аппарат

• поверхность (S),

• тяга двигателя,

• вес, …
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Режим полета

• скорость (V)

• угол атаки (), …

Аэродинамические характеристики

• подъемная сила (L),

• лобовое сопротивление (С), …

L = FL(S, V, )

C = FC(S, V, )

Аэродинамические расчетные модели

Оптимизационная задача: построить S:

S = arg maxS FL(S, V, )

FC(S, V, ) ≤ Cпред

Аэродинамическое проектирование: построить S:

 L  max

 C ≤ Cпред

Математические модели на первых принципах: 

аэродинамические расчетные модели (CFD коды)

• пример: уравнения Эйлера с нерегулярной сеткой 

• время расчёта порядка 10 ч.
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Математические модели на первых принципах: массовые расчеты

EU FP7 Project FFAST (2010 – 2013): Future Fast Aeroelastic Simulation Technologies

• about 100 000 design layout releases are required for a new passenger aircraft

• each layout should be analyzed for 15 to 20 control and environment scenarios

Number of conditions (cases) that are required in the Critical Loads Analysis of a large civil aircraft:

span

sim

simcasecost/time analysis Total
N

N
CN 

Ncase = Number of test cases required to define the envelope of critical loads

Csim = Cost/time of each full order simulation

Nsim = Number of full order simulations required to construct each reduced order model

Nspan = Number of loads cases spanned by each reduced order model

50    - flight points (altitude and speed) 10    - control surface configurations

100  - mass cases (loaded weight and weight distribution) 5      - manoeuvres and gusts (gradient lengths)

4      - control laws

TOTAL NUMBER OF REQUIRED CASES: Ncase = 10 000 000

• Boeing: a total of 800,000 cray-hours were spent for simulation of all the systems in new B-787

• Упрощение моделей, основанных на первых принципах («не учет» некоторых физических 

феноменов, поиск приближенных решений, и т.п.), не решает проблему кардинально 
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Построение аэродинамической модели по данным (1)

• РАН: Центр программных технологий РАН  ФИЦ ИУ РАН (ИСА), ИППИ РАН

• ЦАГИ

• Family of Fast Aerodynamic Surrogate Models developed in Russian Academy of Sciences 2004 – 2007 

• Implemented in AIRBUS Engineering Tools for Aerodynamic design

Airbus experts: application of such surrogate models “provides the reduction of up 

to 10% of lead time and cost in several areas of the aircraft design process”

1) Генерация данных {(Si, Vi, i, Li  FL(Si, Vi, i), Ci  FC(Si, Vi, i)), i = 1, 2, … , N}

• построена математическая параметрическая модель 3D-поверхности самолета

• сгенерирована множество {S} поверхностей (~ 6000, включая ~ 27 000 аэродинамических профилей крыла) 

технологии генеративного искусственного интеллекта

• с помощью CFD-кода (основан на решении уравнений полного потенциала) - ЦАГИ

- для каждой поверхности S

- для разных значений скорости (V) и угла атаки () 

были вычислены подъемная сила L  FL(S, V, ), сопротивление C  FC(S, V, ), и другие характеристики (~ 20) 



2) Построение по данным неизвестных зависимостей (регрессионные методы/машинное обучение):

данные {(S, V, ); (L  FL(S, V, ), C  FC(S, V, ), …)}  зависимости L = FL(S, V, ), C = FC(S, V, ), …

Построение аэродинамической модели по данным (2)

ИИ- интерпретация построенной модели

Построенная суррогатная модель:
• ускорение вычислений в 360 000 раз: время расчета 20 аэродинамических характеристик 

одной компоновки для  65 различных режимов полета:
- CFD-код (уравнение полного потенциала)  2 CPU hours, 

- построенная суррогатная модель  20 CPU milliseconds

• относительная ошибка  1%

• A.V. Bernstein, A.P. Kuleshov, Yu.N. Sviridenko, V.V. Vishinsky. Fast Aerodynamic Model for

Design Technology. Workbook «West-East High Speed Flow Field Conference» (November

19-22, 2007, Moscow, Russia). 2007, 125-126

• А.В. Бернштейн, В.В. Вышинский, А.П. Кулешов, Ю.Н. Свириденко. Быстрый метод

аэродинамического расчета для задач проектирования. Труды ЦАГИ “Применение

искусственных нейронных сетей в задачах прикладной аэродинамики” 2678, 2008, с.

35—45.
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Построенная по данным аэродинамическая модель – «заменитель» математической модели 

«на первых принципах» (суррогатная модель, метамодель)  



Работа с многомерными данными (1)

Поверхность самолета - вектор высокой размерности

Профили крыла:
• профиль – многомерный вектор p ~ 50  200 (ЦАГИ: p = 59)

• 7 профилей крыла: 597 = 413

Проблемы построения математических моделей по данным

• мир многомерен – реальные объекты описываются векторами высокой размерности

• многомерные данные «трудны» для анализа и обработки (проклятие размерности, 

феномен «пустого пространства», …) 
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Работа с многомерными данными (2)

Проклятие размерности (Ричард Беллман, 1961): экспоненциальный рост 

• числа необходимых экспериментальных данных в зависимости от размерности пространства при 

решении вычислительных, оптимизационных, вероятностно-статистических задач регрессии, 

распознавания образов, классификации, машинного обучения, дискриминантного анализа, и др.;

• числа вариантов в комбинаторных задачах в зависимости от размерности исходных данных, что 

приводит к соответствующему росту сложности переборных алгоритмов

Иллюстративный пример

• (X): [0, 1]p  R1 – неизвестная Липшицева функция (  Lip) на единичном p-мерном кубе

• ෝ(X) – произвольная оценка построенная по зашумленной выборке {(Xi, (Xi)), i = 1, 2,…, n}

Неасимптотическая нижняя граница точности (Ибрагимов, Хасьминский (1979), Stone (1982)):

supLipE((X) – ෝ(X))2  Const  n-2/(2+p) (константа не зависит от n и p)

p = 10: n = 10 000 измерений для достижения заданной точности 

p = 20: n ~ 10 000 000 измерений для достижения той же точности 
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Работа с многомерными данными (3)

Феномен «пустого пространства

1. Объемы гиперкуба и вписанного в него шара

С(R, p) = [-R, R]p - p-мерный куб V(С(R, p)) = (2R)p

B(R, p) = { x  Rp: x  R} - p-мерный шар V(B(R, p)) = 
πp/2×Rp

 p

2
+1

lim
𝑝→∞

V(B(R, p))

V(С(R, p))
= 0

0,1 для p = 6

0,0025 для p = 10

2. Объем тонкой сферической оболочки

lim
p→∞

V(B(1, p)) −V(B(1−, p))

V(B(1, p))
= 1
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Работа с многомерными данными (4)

Концентрация мер, разреженная структура, низкоразмерная внутренняя структура «реальных» 

данных: 

• носители реальных данных лежат на малой части «объемлющего» многомерного пространства,

• могут быть описаны/параметризованы небольшим числом параметров
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A. Bernstein, E. Burnaev, S. Chernova, F. Zhu, N. Qin. Comparison of Three Geometric Parameterization methods and Their Effect 

on Aerodynamic Optimization. Eurogen-2011, Sira, Italy, September 14-16, 2011, pp. 758–772

• вычислительно эффективные алгоритмы работы с многомерными данными (предиктивная

аналитика, машинное обучение, Искусственный интеллект, …) в явном или неявном виде

используют низкоразмерную внутреннюю структуру носителей данных

• нахождение по данным внутренней структуры носителей данных и их использование в

алгоритмах – отдельное научное направление исследований

‘Machine learning is about the shape of data’ (ICML’2014)
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Методы работы с многомерными данными (20 век)

Многомерный статистический анализ

Снижение размерности
PCA - метод главных компонент (1903)

Регрессионный анализ (1795/1805/…)

Дискриминантный анализ (1936)

Дисперсионный анализ (1918)

Факторный анализ (1904), …
Линейные модели данных

Гауссовские распределения

Эвристические алгоритмы работы с «нелинейными» многомерными данными

Метод потенциальных функций (1964)  Kernel PCA (1998)

(методы гильбертова пространства с воспроизводящим ядром)

Метод опорных векторов (1963)

Искусственные нейронные сети/автоэнкодеры (1974  1991  …)

Отсутствие математических 

моделей многомерных данных

PCA  Спектральное разложение матриц/тензоров  «тензорные поезда» 
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Новые «математикоемкие» методы работы с многомерными данными

Моделирование многообразий (Manifold Learning) (2000)

Топологический анализ данных (Topological Data Analysis) (2009), …

Нелинейная модель многомерных данных: многомерные данные лежат на (или вблизи) 

нелинейного многообразия невысокой размерности (Многообразия данных), вложенного в 

высокоразмерное пространство наблюдений Seung, Lee: The Manifold Ways of Perception. Science, 2000

Гипотеза многообразия: выборка p-мерных данных Xn = {X1, X2, … , Xn}  Rp:

• лежит на неизвестном Многообразии данных M вложенном в p-мерное пространство (M  Rp) 

• многообразие имеет неизвестную внутреннюю размерность q = Dim M

• получена в соответствии с неизвестным вероятностным распределением μ на M
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По заданной выборке решаются различные задачи:

• снижение размерности: при выбранном q, построить низкоразмерные описания данных

Xn = {X1, X2, … , Xn}  Rp  Yn = {y1, y2, … , yn}  Rq:

(построить отображение вложения h: X  M  Rp  y = h(X)  Rq) c заданными свойствами)

• оценить внутреннюю размерность q = Dim M

• построить оценку ෡𝐌 многообразия данных M

• построить оценки различных элементов многообразия (касательных пространств TM(X), риманова тензора QM(X), …, в 

различных точках многообразия X  M)

• оценить вероятностное распределение μ на M

• решение различных статистических задач (регрессии, классификации, …), носители данных которых лежат на

неизвестном Многообразии данных

Моделирование многообразий: задачи 

Алгоритмы снижения размерности применяются не 

только к исходным данным, но и к данным, возникающим 

на промежуточных слоях глубоких нейронных сетей
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Моделирование многообразий: пример 1 (геодезические линии) 

Задачи повышения четкости изображений

Линейная интерполяция

нелинейные методы

Линейные методы не учитывают, что 

реальные изображения «живут» на 

нелинейных низкоразмерных структурах
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Моделирование многообразий: примеры (1) 

ISOmetric MAPing (ISOMAP) Tehenbaum, de Silva,  Langford: A global geometric

framework for nonlinear dimensionality reduction, 2000

Многомерное шкалирование: сохранение расстояний в низкоразмерных данных

ISOMAP: евклидовы расстояния заменяются длинами геодезических D(Xi, Xj) (оцениваются)  

MetricMDS = σi,j=1
n Xi − Xj

2
− yi − yj

2 2

ISOMAP = σi,j=1
n D Xi, Xj

2
− yi − yj

2
2

ISOMAP-решение: гильбертово пространство со специфическим воспроизводящим ядром 

KISOMAP(Xi, Xj)  = - D2(Xi, Xj) - σk=1
n D2 Xk, Xi - σk=1

n D2 Xj, Xk + σk,s=1
n D2 Xs, Xk

LogMap (2005),  Riemannian manifold learning (2006, 2008), …

Геодезические линии на многообразии – кратчайшие пути  расстояния
X1 X2



M
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Моделирование многообразий: пример 2 (уравнения на многообразиях) 

Xi

Xj

yi yj

Xn – обучающая выборка, h: M  Rp  Rq – желаемое отображение вложения

h(Х) = 

𝜕h

𝜕X1
⋯
𝜕h

𝜕Xp

h(X)− h(X) ≤ 𝛻Mh(X) × X− X + o( X− X ) 

F(h) = ׬𝐌 𝛻Mh X 2mes dX → min

Теорема Стокса: F(h) =  ׬𝐌 h × ∆𝐌h)(X mes(dX) M(h): h(X)  - div(𝛻Mh X ) = - σk=1
p 𝜕2h(X)

𝜕Xk
2

- оператор Лапласа-Бельтрами

Компоненты оптимального вложения h(X) = 

h1(X)
⋯

hq(X)
состоят из q собственных функций оператора 

Лапласа-Бельтрами, отвечающих q минимальным собственным числам

Laplacian Eigenmaps (Belkin, Niyogi: Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, 2003)

• строится nn матрица Лапласиана LLE(Xn) – выборочный аналог оператора Лапласа-Бельтрами

• n-мерные векторы (hk(X1), hk(X2), … , hk(Xn))
T, состоящие из k-ых компонент векторов {h(Xi)}, k = 1, 

2, … , q, являются собственными векторами матрицы Лапласиана, отвечающих q минимальным 

собственным числам
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Моделирование многообразий: пример 3 (касательные расслоения) 

Оценка обобщающей способности методов снижения размерности в произвольной точке Х M

-  dP,2(TM(X), 𝐓෡𝐌
෡𝐗 )  *(X)  +  dP,2(TM(X), 𝐓෡𝐌

෡𝐗 )

• *(X) – некоторая характеристика обобщающей способности
• TM(X) - касательное пространство к многообразию M данных в точке X

• T෡M ෡X - касательное пространство к построенной по данным оценке ෡M многообразия данных в 

• «восстановленной» точке ෡X
• dP,2(L, ෠L) – расстояние между q-мерными линейными пространствами в Rp (проекционная 2-норма на

многообразия Грассмана)

• - и +, 0  -  +  1, - константы
Bernstein, Kuleshov. Manifold Learning: generalizing ability and tangent proximity, 2013

Bernstein, Kuleshov. Tangent Bundle Manifold Learning via Grassmann & Stiefel Eigenmaps, 2012

Задача оценивания касательного расслоения многообразия данных - построение алгоритма
снижения размерности (Grassmann&Stiefel Eigenmaps), обеспечивающий близости между 

• M  ෡M - между точками X M и ෡X  ෡M исходного и восстановленного по данным многообразий M и ෡M

• TM(X)  T෡M ෡X - между касательными пространствами TM(X) и T෡M ෡X к многообразиям M и ෡M

TB(M) =  {(X, TM(X), Х M} - касательное расслоение многообразия данных M
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Моделирование многообразий: геометрия и стохастика

Xn = {X1, X2, … , Xn}  Rp  Yn = {y1, y2, … , yn}  Rq

• Xn  Г(Xn) – граф с вершинами в точках выборки, ребра связывают каждую вершину с k

ближайшими соседями, веса ребер определяются нормированными ядрами «теплопроводности»:

(i, j)  Pij = const × exp −
1

t
Xi − Xj

2
 вероятности появления ребер (σi,jPij = 1, t = 2σ2)

• Yn  Г(Yn) – граф строится подобным образом по «искомым» низкоразмерным представлениям c 
вероятностями появления ребер {Qij}

• Stochastic Neighbor Embedding (SNE): G.E. Hinton and S.T. Roweis. Stochastic Neighbor Embedding. In:

Advances in Neural Information Processing Systems, vol. 15, pp. 833–840, Cambridge, MA, USA, 2002

• Symmetric SNE (SSNE): J.A. Cook, I. Sutskever, A. Mnih, and G.E. Hinton. Visualizing similarity data with a mixture 

of maps. In: Proc. of the 11th International Conference on Artificial Intelligence and Statistics, vol. 2, pp. 67–74, 2007

Минимизация расстояния Кульбака-Лейблера: LSSNE(YnXn) = KL(PQ) = σiσjPijlog2
Pij

Qij
 min

• t-distributed SNE (t-SNE): L.J.P. van der Maaten, G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. 

Journal of Machine Learning Research, 9 (Nov), pp. 2579-2605, 2008 

Lt-SNE(YnXn) = KL(PQ), распределение Q имеет t-распределение Стьюдента 

• Uniform Manifold Approximation and Projection (UMAP): L. McInnes, et. al. UMAP: Uniform Manifold 

Approximation and Projection. The Journal of Open Source Software, 3(29), p. 861, 2018 
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Моделирование многообразий: геометрия и стохастика

MNIST

28x28 = 756 пикселей

Рукописная цифра – 756-мерный вектор

Laplacian 

Eigenmaps
ISOMAP

Построение двумерных представлений 

756-мерных векторов по 6 000 цифрам

t-SNE
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• Bernstein A.V., Kuleshov A.P. Low-Dimensional Data Representation in Data Analysis. Lecture Notes in Artificial 

Intelligence, vol. 8774 “Artificial Neural Networks in Pattern Recognition”, Springer International Publishing, 

Switzerland, pp. 47-58, 2014
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Топологический Анализ Данных: мотивация

• в задачах ИИ (предиктивной аналитики, машинного обучения, суррогатного моделирования, …)

- обучающая информация представлена в виде наборов дискретных данных/облаков точек

- информация в компьютере представлена в дискретной форме

• топология - часть математики/геометрии, изучающая в самом общем виде явление 

непрерывности, а также свойства обобщённых геометрических объектов, не меняющиеся при 

малых деформациях и не зависящие от способа их задания

Предсказания проницаемости пористых и гранулярных сред
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Топологический Анализ Данных: примеры

Предсказания проницаемости пористых и гранулярных сред

• Геометрические характеристики (пористость, извилистость, …)

• Функционалы Минковского (площади, периметры, эйлеровы характеристики, …)

Нулевая проницаемость (в вертикальном направлении) Ненулевая проницаемость

Образец А Образец Б

Значения 

функционалов Минковского
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Топологический Анализ Данных: задачи

Топологический анализ данных: объединение дискретных фрагментов в непрерывные образы 

(глобальные структуры) и вычисление их различных характеристик

• замена набора элементов данных некоторым семейством симплициальных 

комплексов в соответствии с параметром близости.

• анализ этих топологических комплексов с помощью алгебраической топологии 

(новой теорией персистентных гомологий)

• перекодировка устойчивой гомологии набора данных в параметризованную 

версию чисел Бетти (баркоды, персистентные диаграммы, …)

Облако точек (пиксели/воксели изображения)

критерий близости 

- выявление скрытых структур

- построение новых признаков (дескрипторов),

называемых топологическими инвариантами, … 
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Топологический Анализ Данных: пример (фильтрация)

Числа Бетти:

• 0 – число связных компонент (0-мерные гомологии)

• 1 – число «щелей» (1-мерные гомологии)
0 = 1, 1 = 2 0 = 2, 1 = 1

фильтрация: точка  шар радиуса r  увеличивая r, «следим» за:

• количеством связных компонент (0)

• количеством щелей (1)

• «временами жизни» связных компонент и щелей
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Топологический Анализ Данных: пример (процессы «рождения и смерти»)

• в момент r2 «родилась» Щель 1

• в момент r3 «родилась» Щель 2

• в момент r4 «умерла» Щель 2

• в момент r5 «умерла» Щель 1

• Щель 1: родилась в момент r2 и умерла в момент r5

• Щель 2: родилась в момент r3 и умерла в момент r4

Баркод (barcode)

Персистентная диаграмма
(persistence diagram)

1
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Топологический Анализ Данных: примеры

0 рождение

смерть


 

Баркод и персистентная диаграмма:

• Связные компоненты

• цели

Фильтрация по «линиям уровня»



27

Образец А (нулевая проницаемость) Образец Б (ненулевая проницаемость)

ТАД: предсказания проницаемости пористых и гранулярных сред

Баркоды и персистентные 

диаграммы (размерности 0)

в зависимости от характерного размера

• Черные полосы: топологические 

характеристики, соответствующие 

компонентам связности множества пор

• Для непроницаемой/проницаемой пород 

персистентные диаграммы существенно 

различаются



28

Топологический Анализ Данных: машинное зрение

Атомные конфигурации различных химических соединений 
(аморфный и жидкий кремнеземы)
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Топологический Анализ Данных: медицинские приложения

Нейрональные

зоны мозга
ЭЭГ МРТ/фМРТ/диффузионно-тензорная МРТ
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Точность:

по 8 стандартным характеристикам 0,79 

+ 2 топологических характеристики 0.85

(Entropy Complex on Envelopes, 0,64) 

+ еще 2 топологических характеристики 0.88

(Persistent Diagram Bins, 0.63)

Диагностика депрессии по ЭЭГ в состоянии покоя 
(19 каналов) (Resting-state)

Топологический Анализ Данных: медицинские приложения
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СПАСИБО ЗА ВНИМАНИЕ


