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Рассмотрим начально-краевую задачу для сингулярно возмущенного
уравнения теплопроводности

εut(x, t) = uxx(x, t), (x, t) ∈ QT , (1)

u(0, t) = µ(t), 0 ≤ t ≤ T, (2)

ux(π, t) = 0, 0 ≤ t ≤ T, (3)

u(x, 0) = 0, 0 ≤ x ≤ π, (4)

где ε - малый параметр, QT = {(x, t) : 0 < x < π, 0 < t ≤ T}.

Чтобы подчеркнуть зависимость решения задачи (1)-(4) от малого
параметра далее его обозначаем u(x, t; ε).

Сформулируем обратную задачу. Пусть число ε задано,а функция
µ(t) неизвестна. Требуется определить µ(t), если задана дополнитель-
ная информация о решении задачи (1)-(4)

u(x0, t; ε) = g(t; ε), 0 ≤ t ≤ T,

где x0 ∈ (0, π), а g(t; ε) - известная функция.
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u(x, t; ε) = µ(t)−
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n=0
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0
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Разложение u(x, t; ε) по малому параметру

u(x, t; ε) = µ(t) +
m∑

k=1
εkµ(k)(t)fk(x) + εm+1vm+1(x, t; ε),

где функции fk(x) являются решениями краевой задачи

f ′′k (x) = fk−1(x), 0 ≤ x ≤ π, fk(0) = f ′k(π) = 0, k = 1, ...m, f0(x) = 1.

Приближенное решение обратной задачи µ̃m(t; ε) определяется в ре-
зультате замены точного равенства

u(x0, t; ε) = µ(t)+
m∑

k=1
εkµ(k)(t)fk(x0)+ε

m+1vm+1(x0, t; ε) = g(t; ε), 0 ≤ t ≤ T

на следующее

µ̃m(t; ε) +
m∑

k=1
εkµ̃(k)

m (t; ε)fk(x0) = g(t; ε), 0 ≤ t ≤ T
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Нулевое приближение µ̃0(t; ε) = g(t; ε).
Первое приближение µ̃1(t; ε) является решением дифференциального

уравнения первого порядка с малым параметром при старшей производ-
ной

µ̃1(t; ε) + εµ̃′1(t; ε)f1(x0) = g(t; ε), 0 ≤ t ≤ T. (5)

Второе приближение µ̃2(t; ε) является решением дифференциального
уравнения второго порядка с малым параметром при старшей производ-
ной

µ̃1(t; ε) + εµ̃′1(t; ε)f1(x0) + ε2µ̃′′2(t; ε)f2(x0) = g(t; ε), 0 ≤ t ≤ T. (6)

Если известно значение µ(T ) , то µ̃1(t; ε) определяется как решение за-
дачи Коши для уравнения (5) с условием µ̃1(T ; ε) = µ(T ).

Если известны значения µ(T ) , µ′(T ), то µ̃2(t; ε) определяется как
решение задачи Коши для уравнения (6) с условиями µ̃2(T ; ε) = µ(T ),
µ̃′2(T ; ε) = µ′(T ).

Оценки погрешности: ‖µ̃0 − µ‖C[0,T ] ≤ c0ε,

‖µ̃1 − µ‖C[0,T ] ≤ c1ε
2, ‖µ̃2 − µ‖C[0,T ] ≤ c2ε

3.
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Рассмотрим начально-краевую задачу для сингулярно возмущенного
интегро-дифференциального уравнения теплопроводности

εut(x, t) = uxx(x, t) + ε
t∫

0

K(t, τ)u(x, τ)dτ, (x, t) ∈ QT , (7)

u(0, t) = µ(t), 0 ≤ t ≤ T, (8)

ux(π, t) = 0, 0 ≤ t ≤ T, (9)

u(x, 0) = 0, 0 ≤ x ≤ π, (10)

где ε - малый параметр, QT = {(x, t) : 0 < x < π, 0 < t ≤ T}.
Чтобы подчеркнуть зависимость решения задачи (7)-(10) от малого

параметра далее его обозначаем u(x, t; ε).
Сформулируем обратную задачу. Пусть функция K(t, τ) и число ε

заданы, а функция µ(t) неизвестна. Требуется определить µ(t), если
задана дополнительная информация о решении задачи (7)-(10)

u(x0, t; ε) = g(t; ε), 0 ≤ t ≤ T,

где x0 ∈ (0, π), а g(t; ε) - известная функция.
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Если известно значение µ(T ) , то приближенное решение обратной
задачи µ̃(t; ε) определяется как решение задачи Коши для обыкновен-
ного интегро-дифференциального уравнения с малым параметром при
старшей производной

εf(x0)µ̃
′(t; ε) + µ̃(t; ε)− εf(x0)

t∫
0

K(t, τ)µ̃(τ ; ε)dτ = g(t; ε), 0 ≤ t ≤ T,

µ̃(T ; ε) = µ(T ),

где f(x) = x2/2− πx.

При выполнении ряда условий справедлива оценка погрешности

max
[0,T ]
|µ(t)− µ̃(t; ε)| ≤ cε2,
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Рассмотрим начально-краевую задачу для функций u(x, t) , a(x, t) :

νux(x, t)+εut(x, t)+εat(x, t) = Duxx(x, t)+f(x)p(t), (x, t) ∈ QT , (11)

at(x, t) = γ(u(x, t)− a(x, t)), (x, t) ∈ QT , (12)

u(0, t) = u(l, t) = 0, 0 ≤ t ≤ T, (13)

u(x, 0) = 0, 0 ≤ x ≤ l, (14)

a(x, 0) = 0, 0 ≤ x ≤ l, (15)

где QT = {(x, t) : 0 ≤ x ≤ l, 0 ≤ t ≤ T}, ν, ε, D, γ - положительные
постоянные, ε - малый параметр.

Сформулируем обратную задачу. Пусть функция f(x) и постоянные
ν, ε,D, γ заданы, а функция p(t) неизвестна. Требуется определить p(t),
если задана дополнительная информация о решении задачи (11)-(15)

u(x0, t; ε) = g(t; ε), 0 ≤ t ≤ T,

где x0 - заданное число, x0 ∈ (0, l) , а g(t; ε) - известная функция.
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Нулевое приближение
Рассмотрим функцию F0(x), являющуюся решением краевой задачи:

DF ′′0 (x)− νF ′0(x) = −f(x), 0 ≤ x ≤ l, (16)

F0(0) = F0(l) = 0. (17)

Предположим, что F0(x0) 6= 0. Определим функцию

p0(t, ε) = g(t; ε)(F0(x0))
−1.

Теорема 1. Предположим, что выполнены следующие условия:
f ∈ C2[0, l], f(0) = f(l) = 0 , F0(x0) 6= 0; g ∈ C1[0, T ],
g(0; ε) = 0, p(0) = 0.
Тогда

max
[0,T ]
|p(t)− p0(t; ε)| ≤ cε,
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Первое приближение p1(t; ε).
Рассмотрим функцию F1(x) , являющуюся решением краевой задачи:

DF ′′1 (x)− νF ′1(x) = F0(x), 0 ≤ x ≤ l, (18)

F1(0) = F1(l) = 0. (19)

где F0(x) - решение краевой задачи (16),(17).

Предположим, что F1(x0)F0(x0) > 0.

Определим функцию p1(t; ε) как решение задачи Коши для интегро-
дифференциального уравнения с малым параметром при старшей про-
изводной

εF1(x0)p
′
1(t; ε) + F0(x0)p1(t; ε) + εγF1(x0)p1(t; ε)−

−εγ2F1(x0)
t∫

0

exp(−γ(t− τ))p1(τ ; ε)dτ = g(t; ε), 0 ≤ t ≤ T, (20)

p1(0; ε) = 0. (21)
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Теорема 2. Предположим, что выполнены следующие условия:

f ∈ C2[0, l], f(0) = f(l) = 0, F0(x0)F1(x0) > 0;

g ∈ C1[0, T ] g(0; ε) = 0 p ∈ C2[0, T ] p(0) = p′(0) = 0,

то
max
[0,T ]
|p(t)− p1(t; ε)| ≤ cε2,

Если F1(x0)F0(x0) < 0 и известно значение p(T ), то первое прибли-
жение можно определить как решение задачи Коши

εF1(x0)p
′
1(t; ε) + F0(x0)p1(t; ε) + εγF1(x0)p1(t; ε)−

−εγ2F1(x0)
t∫

0

exp(−γ(t− τ))p1(τ ; ε)dτ = g(t; ε), 0 ≤ t ≤ T,

p1(T ; ε) = p(T ).
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