
Андрей Белеванцев
д.ф.-м.н., профессор кафедры СП

ВМК МГУ, ИСП РАН
abel@ispras.ru

Методы системного
программирования

в кибербезопасности

3 декабря 2025 года

• Не сводится к информационной безопасности
• Классические методы необходимы, но недостаточны
(защита по периметру, проверка доступа, криптография, антивирусы и др.)

• 2018: решение Президиума РАН
о новом научном направлении
• 2021: новая специальность ВАК
1.2.4 «Кибербезопасность»
• Программа фундаментальных
научных исследований

• Модели и методы анализа и защиты
программно-аппаратных систем
• Инструментальные средства создания
безопасных программ

• Регуляторика: ГОСТ Р 56939-2016 (2024)
• Стандарты по статическому анализу и
безопасной компиляции 2024 года
• За рубежом: EU Cybersecurity Act, Common Criteria, документы NIST… 2

Кибербезопасность – устоявшаяся научная дисциплина

Ров

Башни

Пункты
доступа

Проверка
данных

Прочные
стены

Внутр. стены

Причина развития кибербезопасности: сложность ПО

GitHub
>100 млн разработчиков
(в 2016 – 5,8 млн)
>420 млн проектов

ОС, фреймворки
PyTorch 7 млн строк кода
TensorFlow 10 млн строк кода
Debian >2 млрд строк кода

Большие данные
2020 – 64 зеттабайт (1 зеттабайт
= 1 млрд TB)
2022 – 97 зеттабайт
2025 – 180 зеттабайт

Платформы искусственного интеллекта,
интернета вещей и др.

Платформы хранения и обработки
«больших» данных

Сервис-ориентированные
облачные платформы

Аппаратура

Средства разработки
и ОС

ПриложенияСейчас программы:
Быстро растут
Усложняются
Не бывают

изолированными

В то же время
программам
необходимы:

Эффективность

Продуктивность

Безопасность

1 2 3 4

FPGAGPU

TPU

3

Систем
ное П

О

Систем
ное П

О

Аппаратура
FPGAGPU

TPU

ЦОД ЦОД

4

Эффективность и продуктивность – средства разработки

Эффективность и продуктивность обеспечивает стек системного ПО – средства разработки,
облачные технологии, инфраструктуры искусственного интеллекта…

Компьютерные оптимизации и наборы инструментов
▪ iOS: Objective-C/LLVM – Swift/LLVM (2014)
▪ Android: Java/Dalvik (2010), Java/Android Runtime (ART) (2014), Jack (2016), Kotlin (2019)
▪ Tizen: C++, JavaScript/WebKit & V8 (2012), C# / Roslyn (2016)
▪ Десктопные ОС: Оптимизации link time / GCC, LLVM, Just-in-Time оптимизации / LLVM, WebKit, ...
▪ Многоядерные процессоры, GPU- и NPU-ускорители: стандарты OpenCL, OpenMP / GCC, LLVM
▪ Наш опыт: 5 официальных ревьюеров GCC, OpenMP для GPU/CUDA в GCC, опережающая

компиляция для JavaScript, оптимизация размера дистрибутива ОС Tizen (уменьшение на ~20%)…

Сотни миллионов строк кода – справиться в одиночку невозможно:
▪ Закрытые компиляторы Intel, IBM, Microsoft проиграли конкуренцию (используют LLVM/Clang)
▪ «Эльбрус»: собственный компилятор GCC, затраты на поддержку своей отдельной кодогенерации,

трата ресурсов и отставание от основной версии
▪ Наш опыт: исследования по поддержке стандарта OpenCL для FPGA (2012 г.)

Спустя 3-4 года это стало мейнстримом для основных производителей Xilinx / Altera

5

Безопасность – основная характеристика

Ключевой вызов: обеспечивать высокий уровень
безопасности при сохранении на конкурентоспособном

уровне эффективности и продуктивности

Безопасность связана с уязвимостями. Основная причина
уязвимостей – ошибки в ПО.

Границы между ошибками, закладками,
уязвимостями размыты.

6

Пример: уязвимость Heartbleed (библиотека OpenSSL)

• Ошибка чтения данных за
границей буфера:
злоумышленник контролирует
длину посланного текста

• Происходит утечка
пользовательских данных

• Весь обмен данными строго
следует зашифрованному
протоколу

500000 сайтов заражено
$500 млн потерь

Шифрованный канал

Шифрованный канал

Версия OpenSSL с уязвимостью была
выпущена в марте 2012 года и

обнаружена только через два года

7

Пример: сложная ошибка в коде, приведшая к уязвимости

• Типы ошибки – Слабость кодирования обработки
входных данных, Переполнение буфера

Модуль с функцией считывания файла-архива.

…

• Прежде чем достичь места реализации
ошибки, введённые извне данные «проходят»
по многим функциям разных модулей

Функция в другом модуле. Ранее считанные
извне данные определяют размер

копируемой памяти.

8

Пример: небезопасная оптимизация в компиляторе

bool auth() {
char buf[N];
bool res;

read_password(buf, N);
res = check_password(buf);

memset(buf, 0, N);
return res;

}

Компилятор удаляет обнуление буфера
с паролем, т.к. с его точки зрения после
обнуления буфер не используется. При
этом пароль останется в памяти.

Работа с паролем (чувствительными данными)

9

Кибербезопасность: направления научных исследований*

* Паспорт специальности ВАК 1.2.4 «Кибербезопасность», программа фундаментальных научных исследований

• Анализ известных и вновь выявляемых уязвимостей, их систематизация, разработка методов
интеллектуального поиска новых классов уязвимостей

• Методы проектирования, моделирования, анализа, трансформации программ для выявления
потенциальных уязвимостей в программных системах с учетом специфики фаз жизненного цикла

• Статический анализ, динамический анализ и фаззинг-тестирование

• Обратная инженерия бинарного кода, восстановление алгоритмов и моделей поведения

• Методы, алгоритмы и средства обеспечения устойчивого функционирования программно-
аппаратных систем в условиях злонамеренного воздействия

• Безопасная компиляция, доверенная среда выполнения, обфускация (запутывание) и
диверсификация кода

• Моделирование, анализ и верификация криптографических протоколов

• Гомоморфное шифрование, безопасность хранилищ данных

• Методы анализа описаний цифровой аппаратуры на предмет наличия закладок и НДВ

10

Стек технологий обеспечения кибербезопасности

• Статический анализатор исходного кода
программ

• Комплекс динамического анализа и
фаззинг-тестирования

• Безопасный компилятор

• Инструмент определения поверхности
атаки

• Инструмент обратной инженерии
бинарного кода и поиска утечек
конфиденциальных данных

• Инструмент отслеживания
используемых библиотек и компонент

• Анализ потоков управления и данных
программы

• Абстрактная интерпретация
• Символьное выполнение
• Анализ чувствительных данных
• Моделирование поведения

программы
• Эмуляция и бинарная трансляция
• Восстановление структуры программы

из бинарного кода
• Формальная верификация
• Поиск «клонов» кода
• Анализ трасс выполнения

Инструменты Методы

Вызов: работа моделей и алгоритмов анализа в ограничениях
десятков миллионов строк кода

• Уровень 1: универсальное абстрактное
синтаксическое дерево («шаблонные» ошибки)
• Уровень 2/3: методы глубокого анализа

• Модель памяти и данных программы
• Интервальная арифметика [a, b] + «выколотая точка»
для размеров и смещений в ячейках памяти
• Определение классов эквивалентности значений

• Межпроцедурный анализ потока данных (резюме
функции, обходы снизу-вверх/сверху-вниз)

• Резюме параметризуется аргументами функции
• Символьные вычисления над внешними (неизвестными) значениями

11

Многоуровневый статический анализ исходного кода (I)

12

Многоуровневый статический анализ исходного кода (II)

• Вызов: работа моделей и алгоритмов анализа
в ограничениях десятков миллионов строк кода

• Уровень 3: чувствительность к путям (символьное
выполнение)

• Отслеживание предикатов пути в ходе анализа,
передача через резюме
• SMT-солверы и логики: битовых векторов,
вещественных чисел, массивов, кванторы…
• Теория QF_UF (равенство символьных выражений)
позволяет отказаться от нумерации значений в пользу
обычного символьного выполнения
• Возможное улучшение: сепарационная логика
(расширение логики Хоара для динамической памяти)

• Анализ указателей, девиртуализация,
IFDS-задача потока данных (достижимость на графах)

13

Реализация методов статического анализа: Svace

• Разрабатывается с 2003 года
• Добавлялись методы анализа потока данных,
символьного выполнения, чувствительных данных
• Добавлялась поддержка популярных языков
(С, С++, Java, C#, Go, Kotlin, Python, Scala…)

• 10 языков, более 70 классов ошибок
и 1000 детекторов
• Анализ 10-20 млн. строк за 5-7 часов
• Эксперименты с направлением анализа,
распространением чувствительных данных
• Ведение истории анализов
• Разметка предупреждений

Вызов: ограничить оптимизации, не теряя производительности
• Надежные оптимизации

• Не предполагать корректного
поведения программы

• Выдача предупреждений
о потенциально опасном коде

• Консервативный анализ
потока данных

• Динамическая защита кода
• Снижение критичности
уязвимости (санитайзеры)
• Диверсификация на этапе компиляции и загрузки

• Реализация (C/C++): на основе компиляторов GCC / Clang 14

Безопасная компиляция

Вызов: модель поведения и данных программы для «умного» перебора
входных данных в больших программах
• Динамический анализ: мониторинг выполнения программы +
выбор очередных входных данных

• Символьное выполнение и стратегии обхода путей выполнения
• Увеличение покрытия, марковские цепи, автоматы Мили…
• Поддержка структуры данных: протоколы, форматы…
• Подсказки «интересных» мест программы от статического анализа

• Анализ «клонов» кода: поиск ошибок по всему дистрибутиву
• Выявление дефектов в программно-аппаратных системах,
масштабируемость, …

15

Динамический анализ и фаззинг

Вызов: модели бинарных программ, пригодные для разнообразных
процессорных архитектур и программ разных классов
• Анализ набора полносистемных трасс выполнения

• Автоматизация восстановления алгоритмов
• Утечки чувствительных данных (в том числе через границы процессов)
• Методы: дизассемблирование, восстановление процессов, анализ потоков данных,
анализ чувствительных данных, динамическая двоичная трансляция…

• Восстановление алгоритмов из бинарного кода
• Специализированное промежуточное представление, позволяющее единообразно
проводить анализ бинарного кода различных процессорных архитектур
• Обратная инженерия бинарного кода по набору трасс для ПО всех уровней

16

Анализ бинарного кода: обратная инженерия

Вызов: мало данных для обучения, «строгая» область
• Помощник, но не заменитель компиляторных алгоритмов
• Классическое машинное обучение

• Фильтрация ложных срабатываний (например, по метрикам программы)
• Автоматическое исправление простых ошибок
• Вывод правил для поиска ошибок из исправлений в коде

• Большие языковые модели
• Помогают в разработке анализа (например, пополнение базы тестов, разработка
моделей функций)
• Поиск «алгоритмических» ошибок
• Оценка истинности предупреждений (предоставляется контекст от анализатора)
+3-14% точности к анализатору, +3-5% дополнительно с дообучением
• Тестирование компиляторов: LLM как «мутатор»
Davide Italiano and Chris Cummins. Finding Missed Code Size Optimizations in Compilers using Large Language Models.17

Машинное обучение в анализе программ

Безопасность искусственного интеллекта: методы и технологии

18

Фреймворки

Датасеты

Обучение
моделей

Эксплуатация
моделей

• Доверенные фреймворки и библиотеки
машинного обучения

• Инструменты проверки наличия
аномалий в наборах данных

• Методы объяснения моделей
• Инструменты для повышения доверия к

предобученным моделям
• Методы федеративного обучения
• Методы выявления предвзятости моделей

• Методы защиты моделей от атак на этапе
эксплуатации

• Методы обнаружения дрейфа данных
• Инструменты оценки устойчивости

обученных моделей к атакам
• Инструменты маркирования

сгенерированного контента

Центр доверенного
искусственного интеллекта в
ИСП РАН (с 2019 г.)

Задел: разработанные методы обеспечения кибербезопасности
(статический анализ, динамический анализ, фаззинг…)

• Кибербезопасность: широкий спектр направлений исследования
• Статический и динамический анализ, безопасная компиляция, анализ чувствительных
данных, обратная инженерия бинарного кода…

• Новое в методах анализа программ
• Многоязыковые программы / языки запросов и пользовательские детекторы
• Моделирование «внешнего» мира / новые виды логик (incorrectness logic)
• Моделирование поведения программы в фаззинге
• Применение машинного обучения

• Новые вызовы – искусственный интеллект
• Применение классических методов анализа к фреймворкам ИИ
• Защита от отравления данных и кражи данных, защита моделей

Необходимо непрерывное развитие фундаментальных методов
в ограничениях больших программных систем

Научные школы, распределенные сообщества, образование 19

Выводы

Искусственный интеллект:
развитие, регулирование, доверие

Спасибо!

