
Зиновкин А. И; Полякова И. Н (Кафедра Алгоритмических языков ВМК МГУ имени М.В Ломоносова)

Конференция «Программирование и вычислительная математика»,
посвящённая 100-летию со дня рождения Николая Павловича Трифонова

Безопасная работа с памятью в Rust

Язык Rust

Разработка началась в 2006 году Грэйдоном Хором

• Первая стабильная версия вышла в 2015 году

• С 2009 года проект поддерживался Mozilla, сегодня развивается Rust Foundation

 Ключевая идея

• • Безопасность памяти без сборщика мусора

• • Высокая производительность на уровне C и C++

/122

Корректность сравнения Rust и C++

Сравнение Rust с языками, предоставляющими полный доступ к памяти, такими как C++,
является оправданным.

 Rust ограничивает прямое управление памятью в безопасной части, но через механизм
unsafe позволяет выполнять низкоуровневые операции.

/123

Rust и философия безопасной инкапсуляции

• Rust строит систему вокруг принципа: небезопасные операции должны быть скрыты внутри
надёжных абстракций.

Формальное подтверждение

Исследование Nima Rahimi Foroushaani и Bart Jacobs.

Даже код с unsafe может быть доказан безопасным при модульной структуре и корректной
инкапсуляции.

/124

Сравнение Rust и C++ в аспекте безопасности

C++ Rust

Гарантии управления
памятью Нет встроенных гарантий Строгие гарантии на уровне

компиляции

Механизм контроля Ручное управление Система владения и
заимствования

Низкоуровневый доступ Доступ напрямую, без
ограничений

Через блоки unsafe строго
ограниченные и
контролируемые

/125

Висячие указатели
Висячий указатель— это указатель, который ссылается на область памяти,
которая была освобождена или больше не является действительной.

C++ Rust

int* createInt() {
 int value = 42;

 int* ptr = &value;
return ptr;

// Возврат указателя на локальную
переменную — проблема!}

fn create_int() -> &i32 {
 let x = 42;

 &x // Ошибка! 'x' выходит из области
видимости

}

/126

Разыменование нулевых указателей
В C/C++ разыменование нулевых указателей — это известная проблема.

Попытка доступа к памяти через нулевой указатель приводит к аварийному завершению
(`segmentation fault`) или непредсказуемым последствиям.

Так же данная уязвимость может быть использована для:

• Перезаписи указателей на функции;

• Перехода к определённым участкам памяти;

• Выполнения произвольного кода.

/127

Тип Option в Rust
В Rust для явного представления отсутствующих значений используется тип `Option`.

Главные преимущества:

• Исключение разыменования нулевых указателей

• Принудительная обработка всех случаев

• Безопасность без потери производительности

• Option реализован как нуль-оптимизированное перечисление

• В рантайме занимает столько же памяти, сколько nullable‑указатель в C++, но с
гарантиями безопасности

/128

Пример уязвимости с нулевым указателем

C++ Rust

int unsafe_length(const std::string* s) {
 return s->length();

// UB если s == nullptr
}

fn safe_length(s: Option<&String>) -> usize {
 s.map(|x| x.len()).unwrap_or(0)

}

/129

Сравнение Rust и C++: управление памятью

C++ Rust

Безопасность владения достигается через
«умные» указатели Модель владения встроена в язык

«Умные» указатели — библиотечные
абстракции, не часть типовой системы

Применяется ко всем значениям по
умолчанию

Их использование зависит от дисциплины
программиста

 Обеспечивает единообразие и
предсказуемость поведения

/1210

C++ Rust

Широкий набор внешних инструментов
анализа и отладки (Valgrind,

AddressSanitizer, статические анализаторы)

Контроль памяти встроен в типовую систему
и компилятор(так же поддержка

Valgrind,Miri)

Инструменты выявляют и смягчают
последствия уже допущенных ошибок

Ошибки предотвращаются ещё на
этапе компиляции

Их использоa Безопасность зависит от
использования сторонних средств вание
зависит от дисциплины программиста

Архитектурные гарантии встроены в язык

Дополнительные инструменты безопасности

/1211

Заключение

Rust обеспечивает высокий уровень безопасности памяти благодаря встроенной системе
владения и контроля времени жизни.

В отличие от C++, где многое зависит от дисциплины и внешних инструментов, Rust
предотвращает ошибки уже на этапе компиляции.

Такой подход делает язык надёжным для критически важных приложений,

сохраняя привычную императивную парадигму.

